

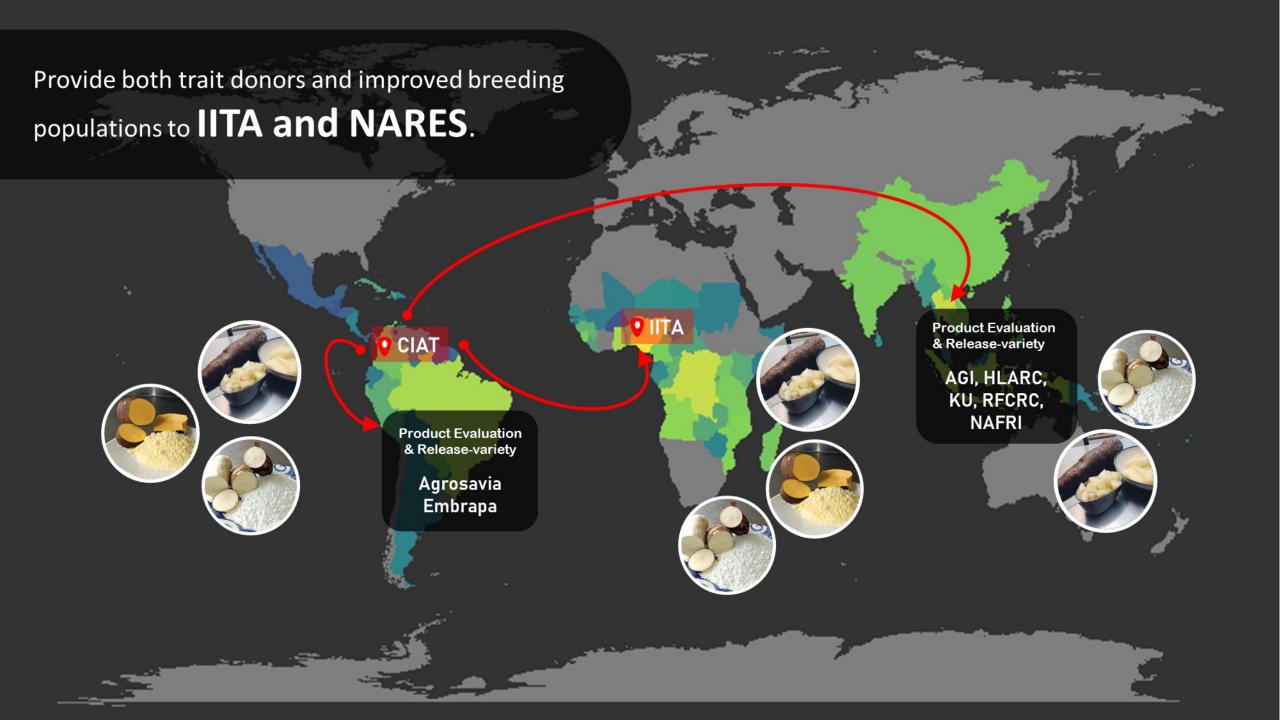
Establishing sustainable solutions to cassava diseases in mainland Southeast Asia

-- Objective 2 Breeding and Selection

Xiaofei Zhang, Cu Thi Le Thuy, Phuong Duc Pham, Trang Do Thi, Jonathan Newby

2023 Oct 01

Managed Separated Populations for Four Products



BC, Beta-carotene; CQ, cooking quality; WX, waxy starch; SG, small granule starch; PQ, processing quality

- 1) Cassava for starch and animal feed
- 2) Biofortified cassava for human consumption
- Fresh and dried roots for human consumption
- 4) Cassava for **specialty** starch
- 5) Processing- **granulated** and paste for human consumption

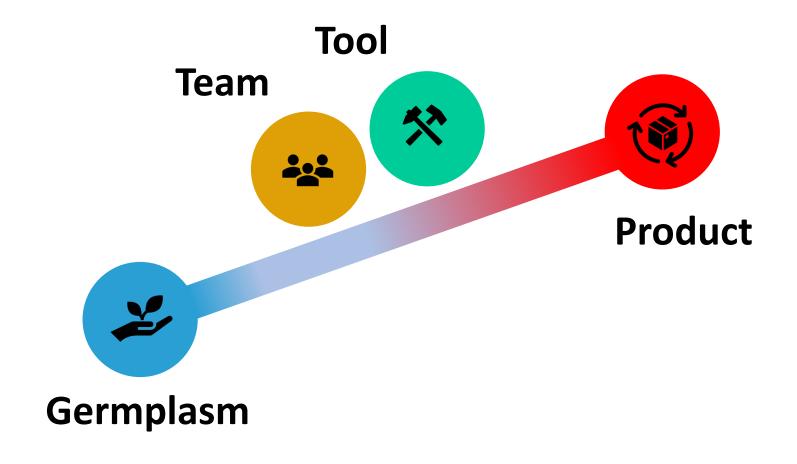
TPE: subhumid and semi-arid lowland tropics **40 ha** of breeding trials at 3 locations

CMD Was Reported in South East Asia in 2015

RESEARCH PROGRAM ON Roots, Tubers and Bananas

Australian Government

Australian Centre for International Agricultural Research



Establishing sustainable solutions to cassava diseases in mainland Southeast Asia

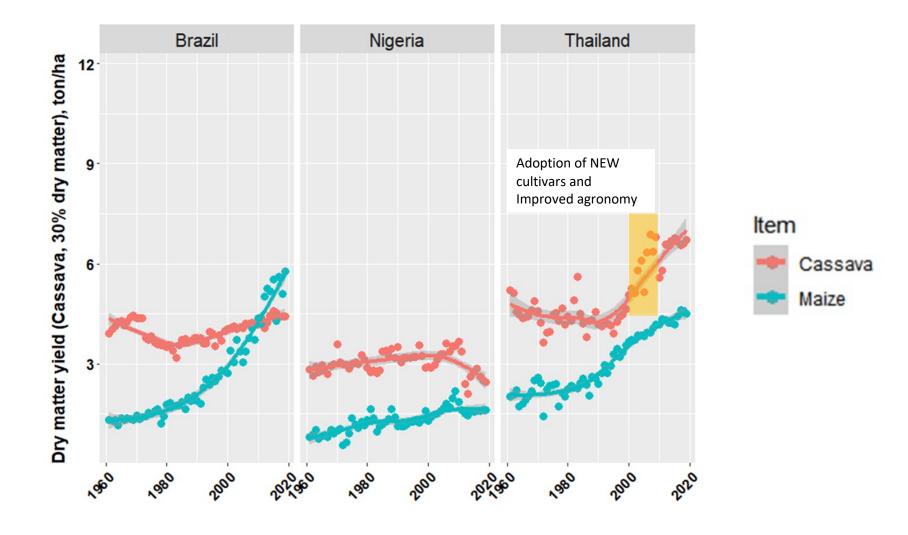
Objective 2: Enhance the capacity and collaboration between breeding programs in mainland Southeast Asia to develop new product profiles for commercially viable cassava varieties by identifying and incorporating known and novel sources of resistance to Cassava Mosaic Disease (CMD) and Cassava Witches Broom Disease (CWBD) into national breeding programs

Plant Breeding is the **genetic improvement** of **plants** for **human benefits**.

CO_334:0000114

CO_334:0000013

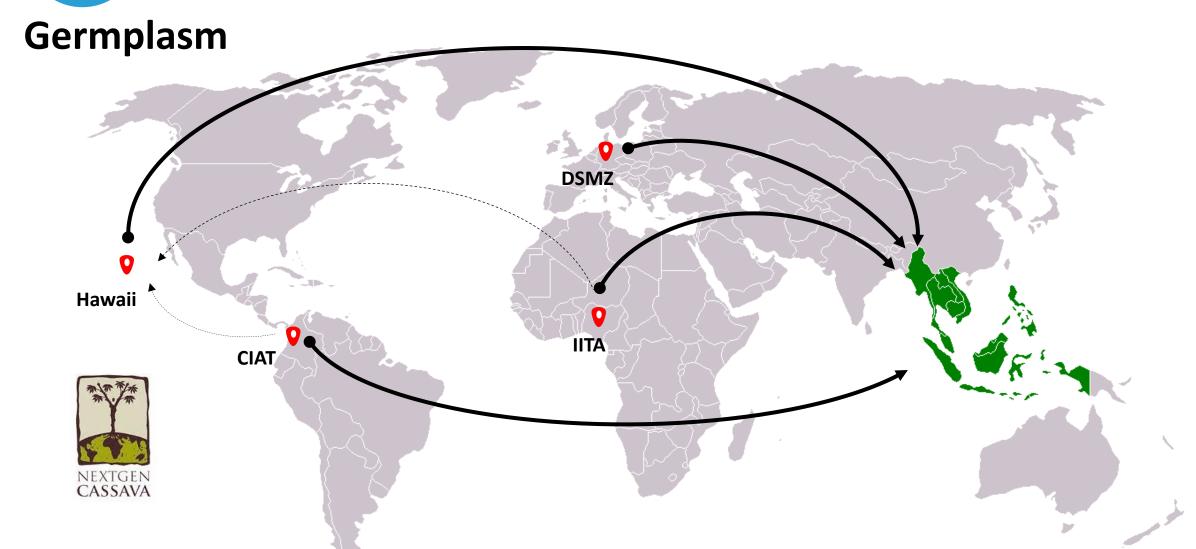
CO_334:0000071
CO_334:0000138
CO_334:0000301
CO_334:0000099
CO_334:0000079
CO_334:0000018
CO_334:0000123
CO_334:0000123
CO_334:0000225


CO_334:0000223 CO_334:0000221

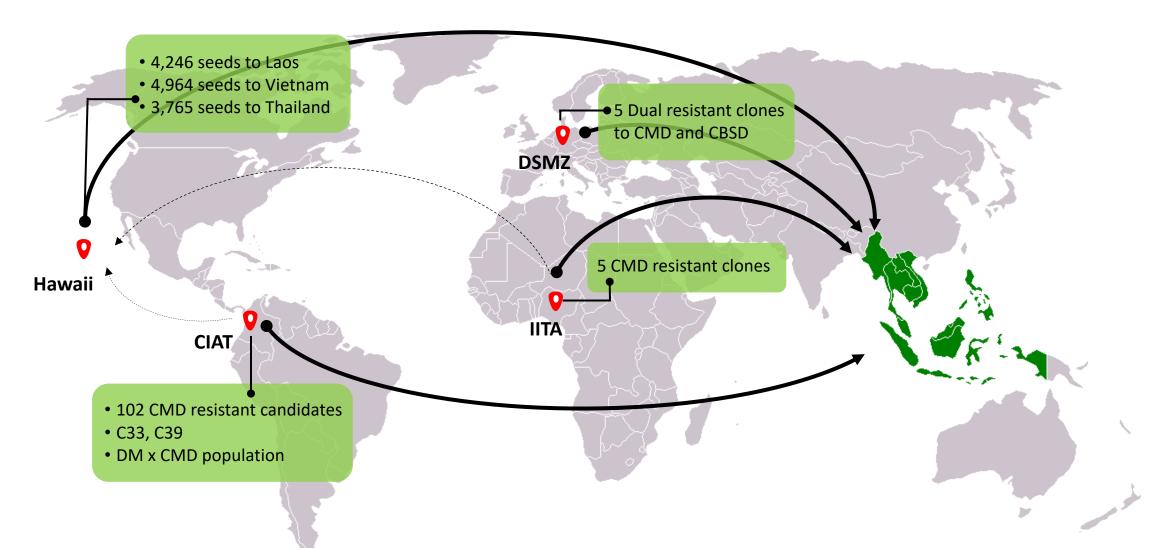
High and stable dry matter cassava for South East Asia (with CMD resistance)

	Tai	get Prod	uct Profile					
			animal feed South East Asia					
	Cassava, SEA, SEA, Indus	trial starch	and animal feed, NA, ??, ??,	NA				
		Cassa	iva					
		South Ea	st Asia					
		South Ea	st Asia					
Laos (86	,269), Cambodia (554,651), Vietnam (441	,405), Thail	and (1,224,459), Indonesia (1	28,105), Philipp	ines (33,36	66)		
		2,468,	257					
		Varie						
	Subhumid lowlan	d tropics an	d semi-arid lowland tropics					
	1		1			Threshold		
	Trait Scale Min Score 1							
		1. 0	2.6	requirement	trait	trait		
Color	Flesh color	1 to 3	<=2 (1, white)	Essential		Υ		
Yield	Fresh yield	ton/ha	10% greater than commercial checks	Essential	Y			
	Starch content	%	>=25	Essential		Υ		
	Germination	%	>80	Essential		Υ		
	Plant vigor	1 to 5	>=3 (5, vigorous)	Essential		Υ		
	Lodging	1 to 3	<=2 (3, complete loging)	Essential		Υ		
	Plant type	1 to 5	<=3 (1, erect plant)	Essential		Υ		
	Branch number	count	<=5	Essential		Υ		
	Plant height	cm	150-350	Nice to have				
	Height of the 1st branch	cm	>100	Essential		Υ		
	Stem length with leaves	cm	>30cm	Nice to have		Υ		
	Easy harvest	1 to 3	<=2 (3, difficult to harvest)	Nice to h				
Agronomic traits	Peduncle length (visual)	1 to 3	2 (3, long)	Esse				
	Root skin color	1 to 3	<=2 (3, brown)					
l	Root type	1 to 5	<=3 (1, good root type)					
	Root		13. heavy constri					

Achievements in South East Asia



Use Elite Varieties in South East Asia



Introduce CMD-resistant Germplasm

Introduce CMD-resistant Germplasm

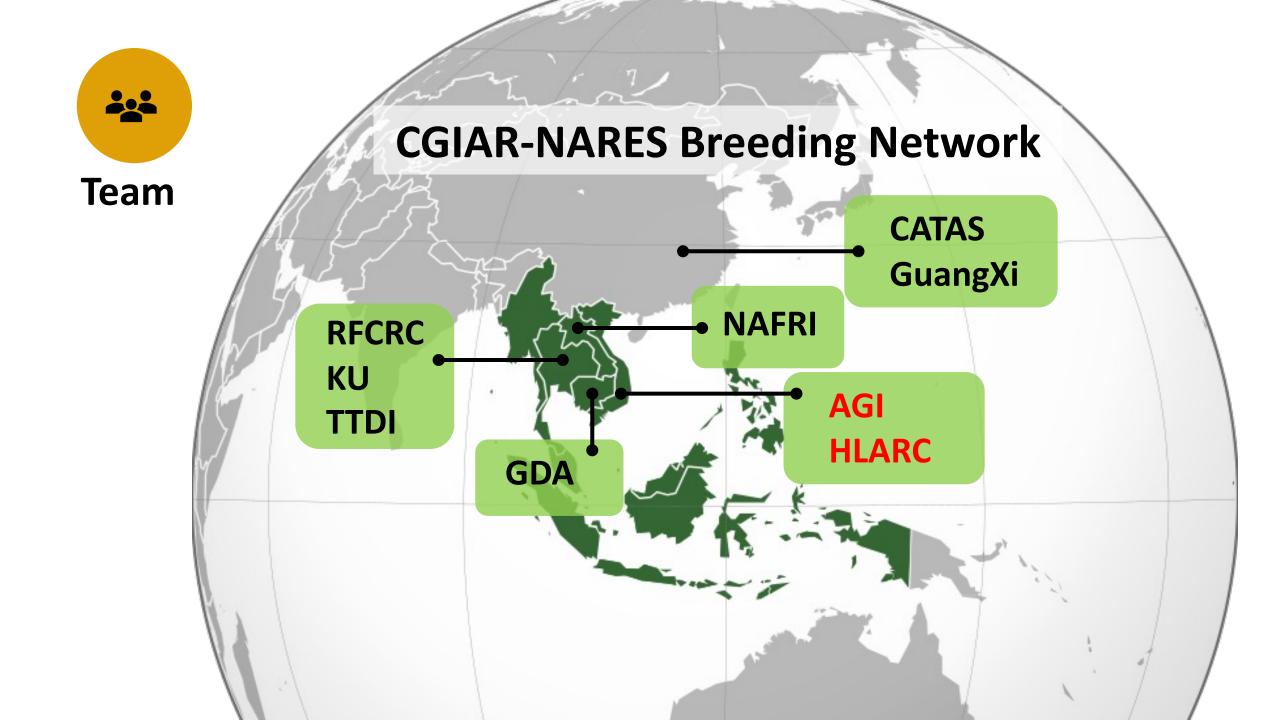
Multidisciplinary Team

Breeding + Genetics

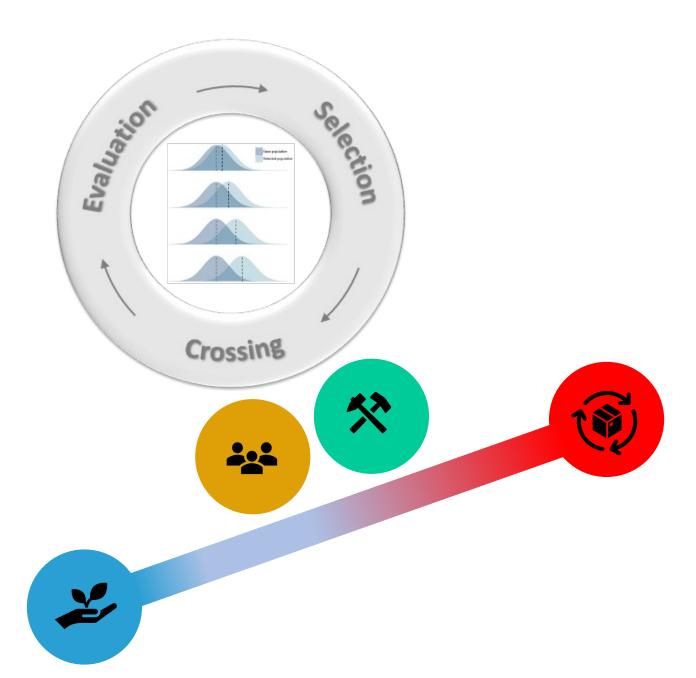
Agronomy

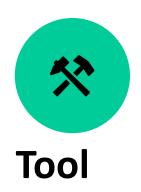
Physiology

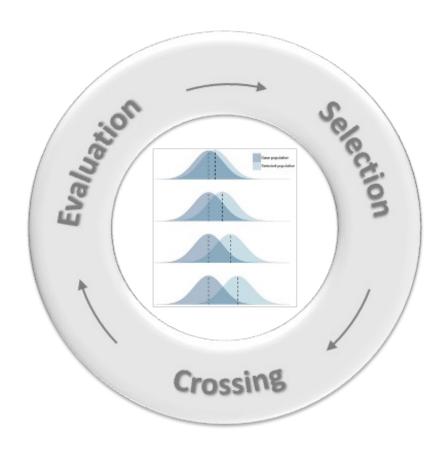
Pathology


Seed System

Ag-economist


NARES


Farmer Processor


Market

- Germplasm Introduction
- Variety Development

Breeding Trialing Network in Vietnam

- 1 Tay Ninh
- 2 Dong Nai (HLARC)
- S Lam Dong
- 4 Dak Lak
- **5** Phu Yen
- **6** Quang Ngai
- 7 Ha Noi (AGI)
- **8** Son La

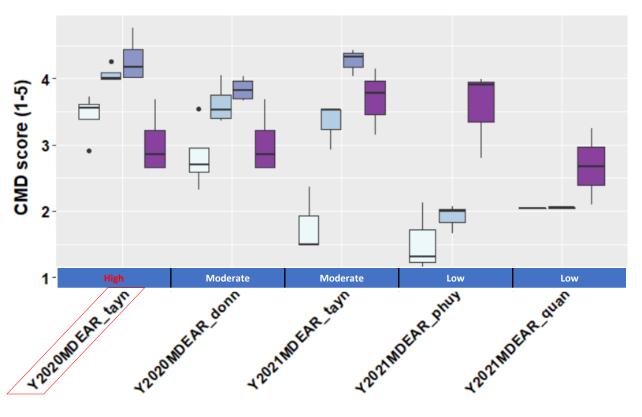
HLARC, Hung Loc Agricultural Research Center **AGI**, Agricultural Genetics Institute

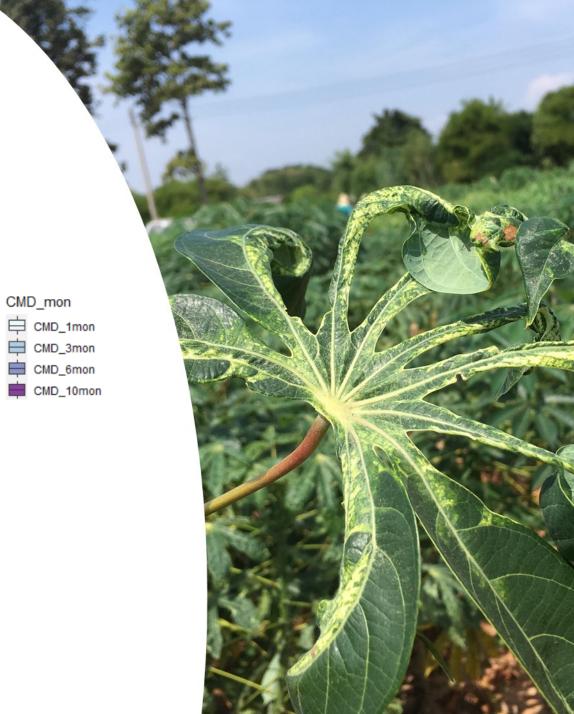
Introduce CMD-resistant Germplasm in Vietnam

Introduction
2018-2019
CIAT and IITA

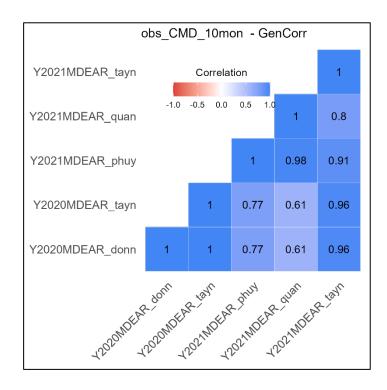
Evaluation 2019-2020 (1 loc) **AYT**2020-2021
(2 loc)

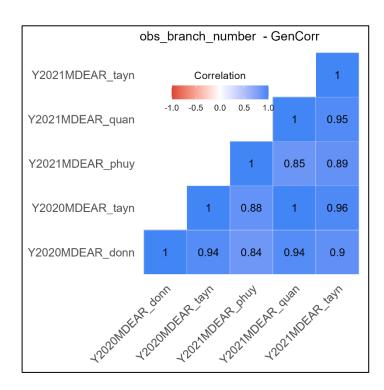
RYT 2021-2022 (6 loc) Demonstrate `& Release 2022-2023

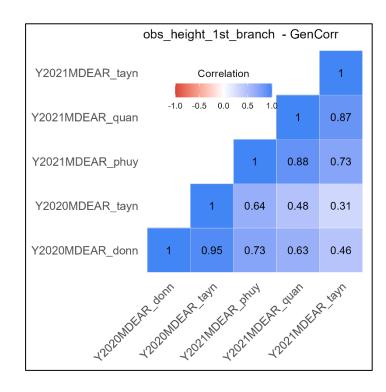

Ha Noi		*Multiplication	Son La	Quang Ngai Gia Lai Thanh Hoa Quang Tri Son La
HLARC Tay Ninh *Evaluated 142 collections from farmers' field farmer	Tay Ninh ated collections from	Dong Nai Tay Ninh *Imported seeds from Hawaii	Tay Ninh Dong Nai Dak Lak Phu Yen Quang Ngai	Tay Ninh Dong Nai Dak Lak Phu Yen Quang Ngai

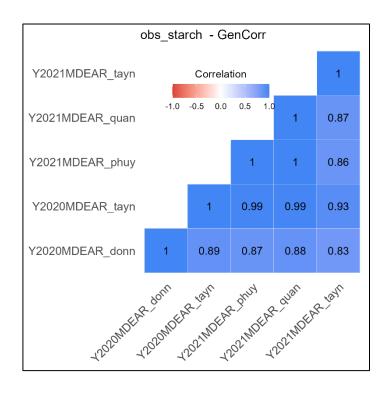

Good Yield Trial Quality – Moderate to High Heritability

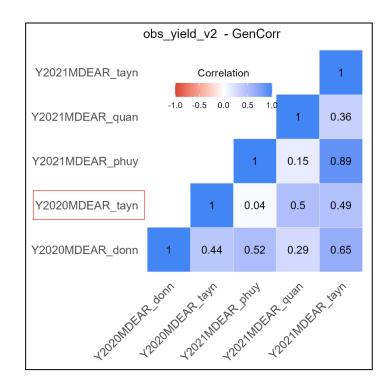
trial	CMD_1mon	CMD_3mon	CMD_6mon	CMD_10mon	height	height_1st_ branch	branch_ number	starch	yield_v2	starch_yield	harvest_ index
Y2020MDEAR_donn	0.99	0.98	0.99	0.96	0.49	0.93	0.92	0.75	0.67	0.49	NA
Y2020MDEAR_tayn	0.98	1	0.99	0.96	0.7	0.85	0.87	0.49	0.82	0.76	NA
Y2021MDEAR_phuy	0.9	0.94	NA	0.98	0.87	0.8	0.94	0.95	0.61	0.5	0.91
Y2021MDEAR_quan	1	1	NA	0.99	0.53	0.72	0.89	0.92	0.77	0.76	0.95
Y2021MDEAR_tayn	0.91	0.98	0.98	0.96	0.88	0.81	0.97	0.88	0.54	0.4	0.78

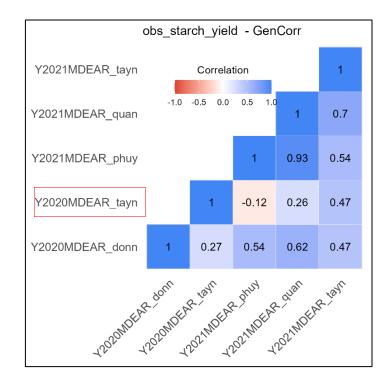

Good	Poor


Different CMD Pressure

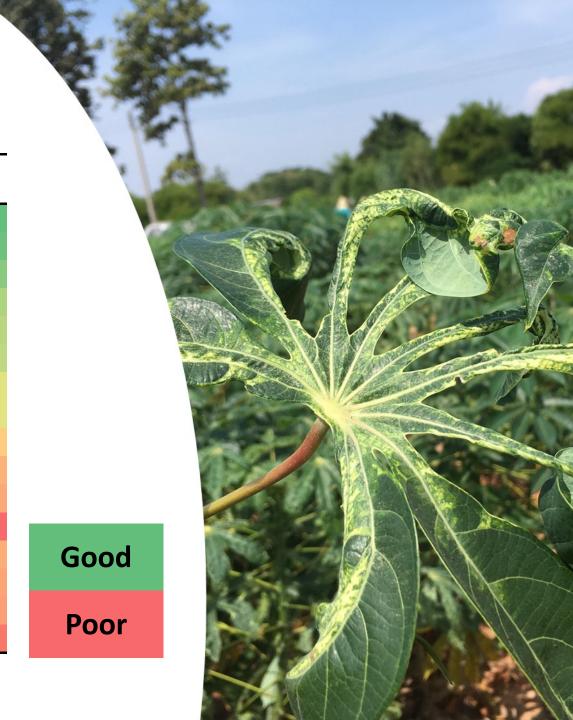



Genetic Correlation among Environments– CMD and Plant Type





Genetic Correlation among Environments – Starch Yield



Multi-environment BLUP

-- Summary of the best clones and checks

-			height_1st_	branch		yield	starch_yield
_	clone	CMD_10mon	branch	number	starch (%)	, (ton/ha)	(ton/ha)
	KU50	3.0	200	0.4	27.1	28.0	8.0
	TMEB419	1.1	212	0.7	24.3	30.5	7.9
	CR24-16	1.0	249	0.0	26.0	25.5	7.6
	CR13-8	1.0	190	2.5	24.5	26.8	7.2
CIAT	CR24-3	1.0	110	2.9	22.3	28.7	7.1
&	CR52A-2	1.0	136	3.2	24.2	26.7	7.1
IITA	AR9-48	1.0	204	2.4	25.4	27.5	6.7
	CR52A-4	0.9	89	3.3	27.1	24.7	6.7
	IBA980581	1.0	159	0.7	20.5	29.1	6.1
	IBA972205	1.0	98	2.8	18.5	29.1	5.9
	IBA920057	1.0	251	1.3	22.8	23.7	5.8
	IBA980505	1.0	114	2.2	18.9	23.3	5.2
	HL-S11	3.7	225	0.0	28.3	19.2	5.8
	KM140	3.5	191	0.2	21.4	22.9	5.8
	KM419	3.5	147	0.9	24.7	19.8	5.7
_	KM505	2.6	215	0.6	25.8	19.9	5.3

The clones were sorted based on **starch yield**.

Multi-environment BLUP

-- Summary of the best clones and checks

BLUE – single environment mean **BLUP** BLUE – single environment mean **BLUP** starch_yield 2021 tayn **2021phuy** 2021_quan CMD_10mon 2020 tayn 2021 tayn 2021_quan 2020 donn **2021phuy** (ton/ha) **KU50** 4.0 4.0 3.4 13.3 2.4 6.4 7.8 2.3 1.0 11.0 3.0 8.0 **TMEB419** 1.0 1.0 1.4 1.3 1.0 7.6 13.5 10.1 4.4 9.0 1.1 7.9 CR24-16 1.0 1.0 1.1 1.1 1.0 5.8 3.3 8.0 10.2 11.7 1.0 7.6 CR13-8 1.0 1.0 1.0 8.5 9.4 1.0 1.0 7.0 4.4 6.1 1.0 7.2 CR24-3 1.0 1.0 1.0 NA 8.7 7.3 12.7 NA NA NA 1.0 7.1 CR52A-2 1.0 1.0 NA NA NA 8.7 8.9 NA NA NA 1.0 7.1 9.6 4.5 AR9-48 1.0 1.1 1.1 1.0 8.1 6.6 8.6 1.0 1.0 6.7 0.9 1.0 8.1 NA CR52A-4 0.9 0.9 NA 7.2 9.2 6.5 0.9 6.7 IBA980581 1.1 1.1 1.0 0.9 1.0 4.7 13.1 8.1 2.6 5.9 1.0 6.1 3.8 IBA972205 1.0 1.0 0.9 1.1 1.0 5.5 7.7 11.6 3.1 1.0 5.9 IBA920057 1.1 1.1 NA 5.5 4.8 4.1 1.1 0.9 10.6 NA 1.0 5.8 IBA980505 1.0 1.0 NA 1.0 NA 4.8 6.1 NA 2.1 NA 1.0 5.2 HL-S11 3.1 4.1 4.0 3.4 3.1 NA 11.6 7.0 1.1 NA 3.7 5.8 2.7 2.7 3.1 3.9 NA 7.5 6.0 6.4 3.2 **KM140** 3.5 NA 5.8 3.7 2.8 KM419 3.7 3.8 3.3 5.0 3.4 6.5 3.2 5.9 3.5 5.7 2.6 2.6 NA NA 5.6 KM505 2.1 6.4 NA NA 6.2 2.6 5.3

The clones were sorted based on starch yield.

CIAT

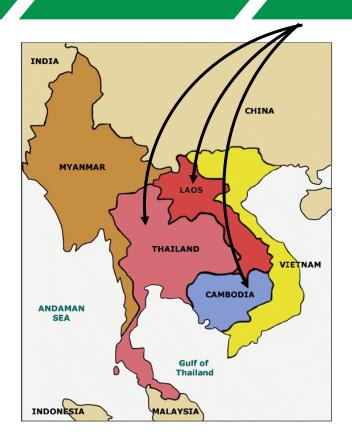
&

IITA

Varieties Released in Vietnam

			BLUE	– single	environn	nent mea	an	BLUP	BLUE – single environment mean					BLUP
			2020_donn	2020_tayn	2021_tayn	2021phuy	2021_quan	starch_yield (ton/ha)	2020_donn	2020_tayn	2021_tayn	2021phuy	2021_quan	starch (%)
		KU50	13.3	2.4	11.0	6.4	7.8	8.0	28.4	28.2	27.2	24.1	29.1	27.1
	HN1	TMEB419	7.6	13.5	10.1	4.4	9.0	7.9	26.8	29.7	25.3	20.0	24.1	24.3
	HN36	CR24-16	5.8	10.2	11.7	3.3	8.0	7.6	27.1	30.9	27.0	22.5	27.2	26.0
		CR13-8	7.0	8.5	9.4	4.4	6.1	7.2	25.9	29.5	25.6	20.8	25.3	24.5
CIAT		CR24-3	8.7	7.3	12.7	NA	NA	7.1	22.5	27.7	24.7	NA	NA	22.3
		CR52A-2	8.7	8.9	NA	NA	NA	7.1	23.8	30.7	NA	NA	NA	24.2
&	HN97	AR9-48	8.1	6.6	9.6	4.5	8.6	6.7	25.8	25.8	25.9	23.2	25.8	25.4
IITA		CR52A-4	7.2	8.1	9.2	NA	6.5	6.7	26.8	29.6	29.3	NA	26.9	27.1
	HN80	CR27-20	8.9	7.4	8.9	NA	4.6	6.5	25.9	30.4	26.5	NA	26.4	26.3
	HN5	IBA980581	4.7	13.1	8.1	2.6	5.9	6.1	21.0	27.1	20.5	18.0	19.8	20.5
	HN3	IBA972205	5.5	7.7	11.6	3.8	3.1	5.9	21.4	26.1	21.0	12.8	14.2	18.5
		IBA920057	5.5	4.8	10.6	4.1	NA	5.8	22.0	25.8	26.6	19.0	NA	22.8
		IBA980505	4.8	6.1	NA	2.1	NA	5.2	21.4	23.5	NA	14.8	NA	18.9
		HL-S11	11.6	1.1	7.0	3.4	NA	5.8	29.0	29.1	27.6	27.1	NA	28.3
		KM140	7.5	6.0	6.4	3.2	NA	5.8	21.3	27.1	23.3	17.9	NA	21.4
		KM419	5.0	3.4	6.5	3.2	5.9	5.7	23.8	30.7	23.8	22.5	23.0	24.7
		KM505	6.4	5.6	NA	NA	6.2	5.3	25.8	31.3	NA	NA	27.9	25.8

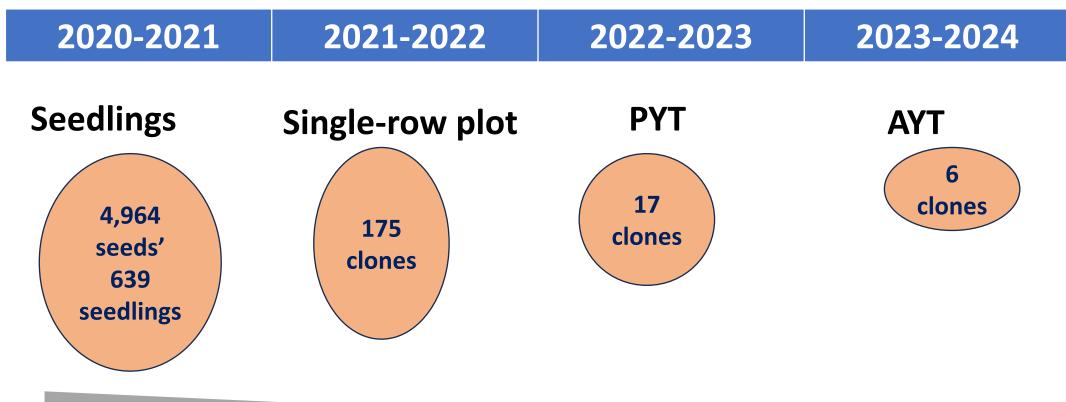
The clones were sorted based on **starch yield**.


Share CMD-resistant Germplasm in Southeast Asia

Introduction
2018-2019
CIAT and IITA

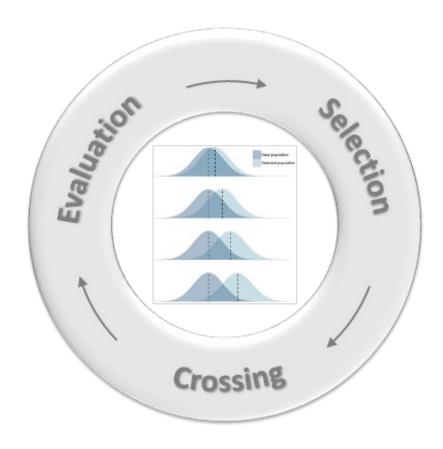
Evaluation 2019-2020 (1 loc) **AYT**2020-2021
(2 loc)

RY I2021-2022
(6 loc)


Demonstrate & Release2022-2023

- •The CMD-resistant clones with the best agronomic performance from CIAT and IITA were shared with **Thailand, Laos and Cambodia**.
- •The tissue culture plantlets were sent from AGI or CIAT
- •Yield trials were established in 2023.

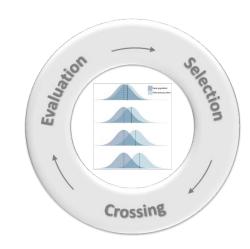
Population from Hawaii

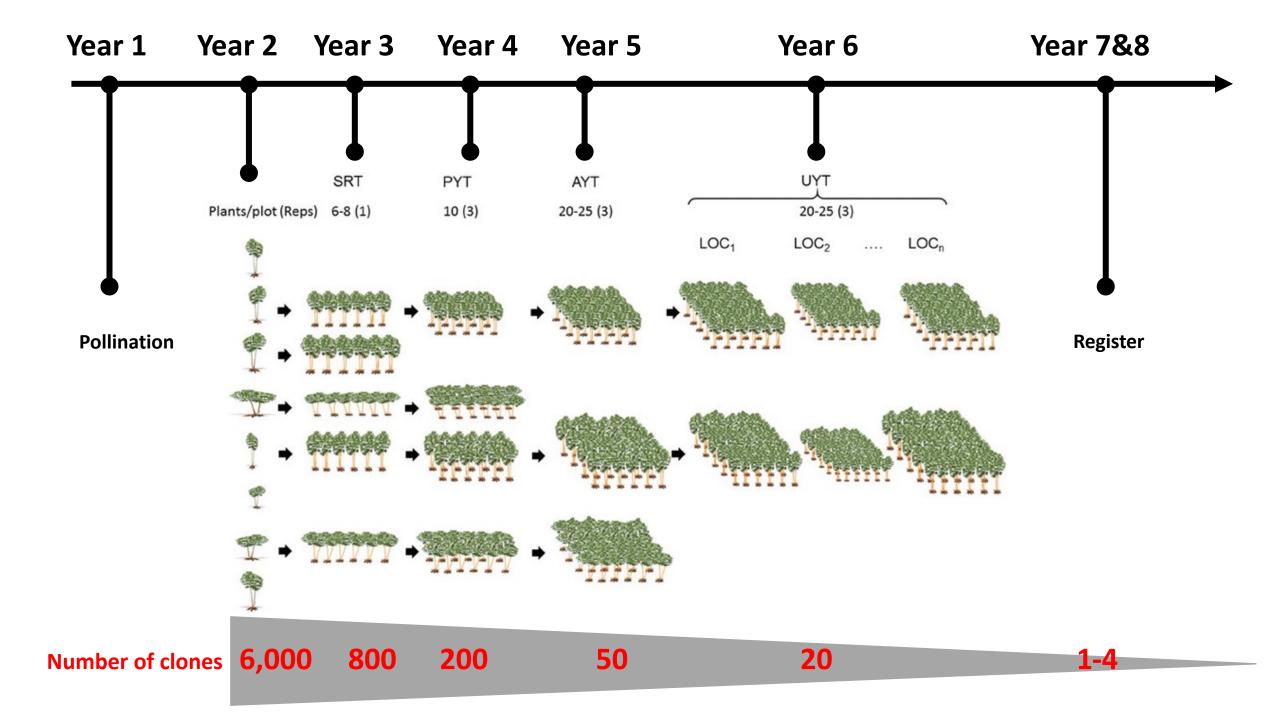

Performance of the Population from Hawaii in PYT

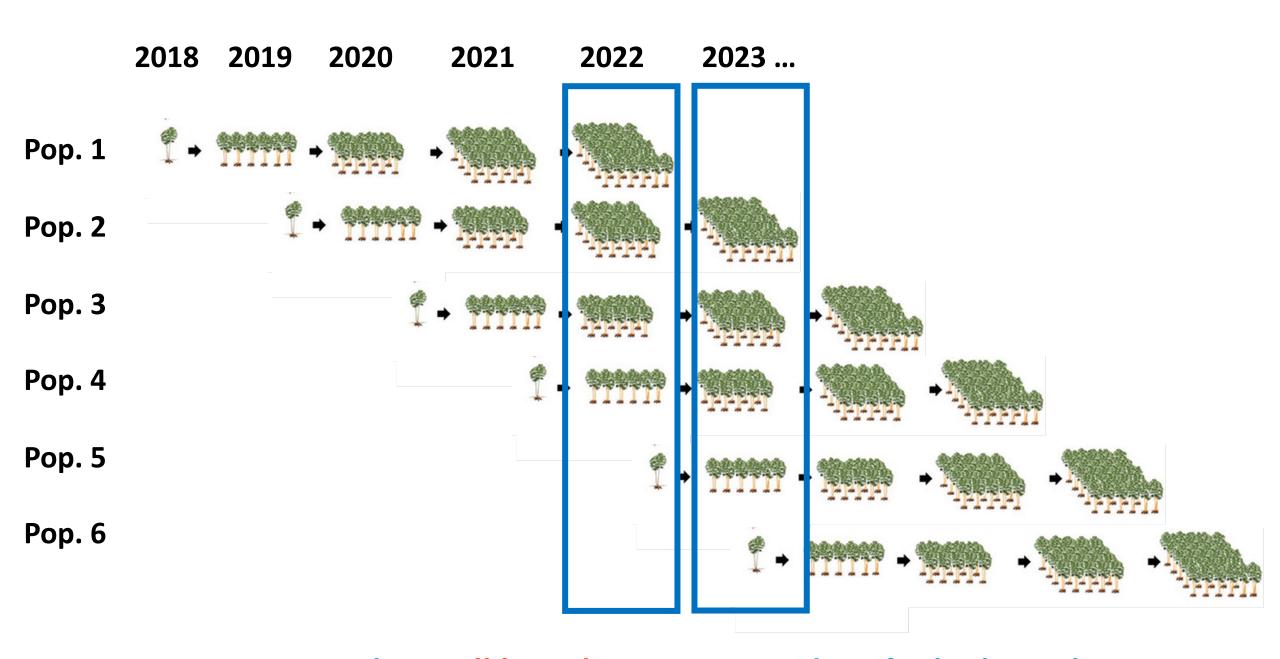
genotype			BLUPs_ger	mination_perc	BLUPs_star	rch	BLUPs_yiel	d_ha	BLUPs_starch_yield	
350 10	check	advanced	Tai Ninh	Dong Nai	Tai Ninh	Dong Nai	Tai Ninh	Dong Nai	Tai Ninh	rch_yield Dong Nai
KM505	yes		1.0	1.0	23.8	23.8	28.0	17.0	6.5	4.5
KU50	yes		0.9	0.9	21.6	20.9	28.0	23.4	5.8	5.4
TMEB419	yes		1.0	1.0	16.8	21.3	28.8	26.3	4.7	5.8
VN19-1050	yes		0.9	0.9	11.6	17.2	31.5	14.9	3.4	3.2
IBA980581	yes		0.4	0.4	14.9	13.8	15.3	6.8	2.3	1.1
CR24-16	yes		0.5	0.2	20.3	14.5	9.5	-0.5	2.1	0.3
HLH20-H0016		yes	0.9	0.8	20.8	20.2	32.6	13.2	6.5	3.4
HLH20-H0085		yes	0.9	0.4	20.0	18.9	31.9	7.8	6.2	1.8
HLH20-H0108		yes	0.9	0.8	18.6	15.1	34.1	8.1	6.1	1.7
HLH20-H0022		yes	0.8		22.9		26.2		5.8	
HLH20-H0047		yes	0.9	0.9	17.8	18.6	32.4	21.6	5.7	4.3
HLH20-H0075		yes	0.8	0.4	18.7	16.7	30.8	1.3	5.6	0.8
HLH20-H0135			0.8		18.8		27.0		5.1	
HLH20-H0039		yes	0.9	0.9	12.1	9.0	45.5	28.9	4.8	1.8
HLH20-H0036			0.7	0.3	19.0	16.3	22.7	4.9	4.2	1.1
HLH20-H0038			0.9		17.5		23.5		4.0	
HLH20-H0051			0.5	0.3	18.8	15.7	21.6	5.9	4.0	0.4
HLH20-H0082			0.5	0.0	19.4		11.6	0.0	2.5	0.0
HLH20-H0031			0.6	0.2	19.9	16.6	9.3	0.5	2.2	0.3
HLH20-H0050			0.3	0.4	16.6	13.8	10.7	5.6	1.9	0.7
HLH20-H0065			0.5	0.2	20.4	18.4	5.4	1.6	1.2	0.3
HLH20-H0053			0.1	0.0		16.6		1.7		0.6
HLH20-H0083			0.0	0.1				0.0		0.0

Summary of Introduced Germplasm

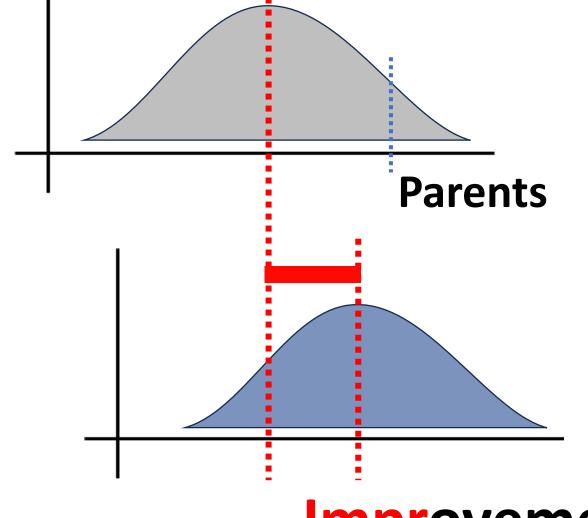
- HN1 (TMEB419) is a widely adaptable line with good resistance to CMD and good fresh tuber yield and starch content.
- From 2022 until now, HN1 (TMEB419) has been planted in more than 6,000 hectares.
- Further improvement is required in starch stability, plant type, other pest and disease resistance




- Germplasm Introduction
- Variety Development



Multiple years of evaluation to confirm the stable performance cross years

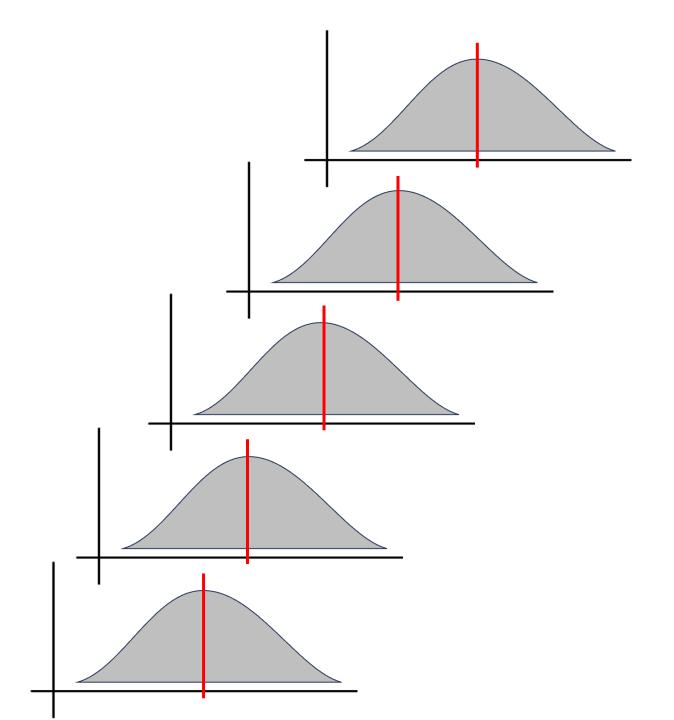


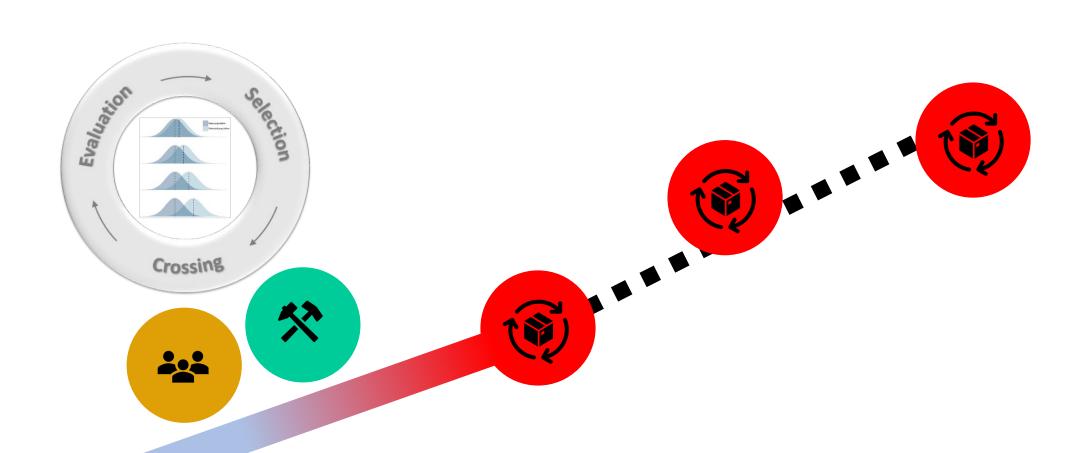
Every year, we have all breeding stages to identify the best clones

Parental generation

Progeny generation

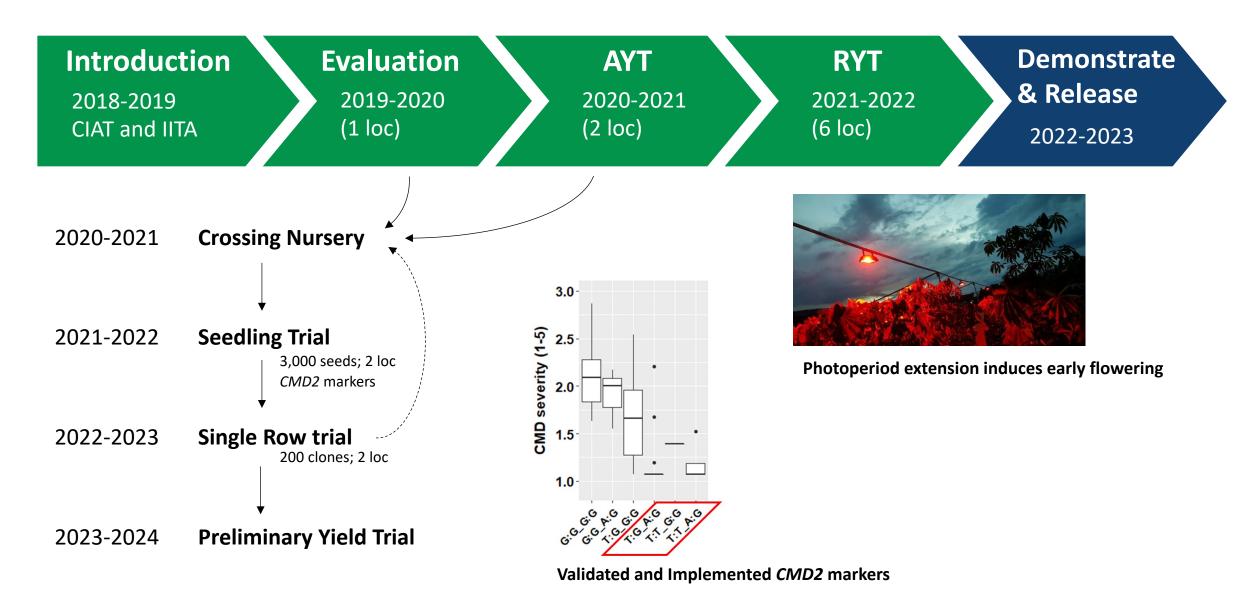
Improvement

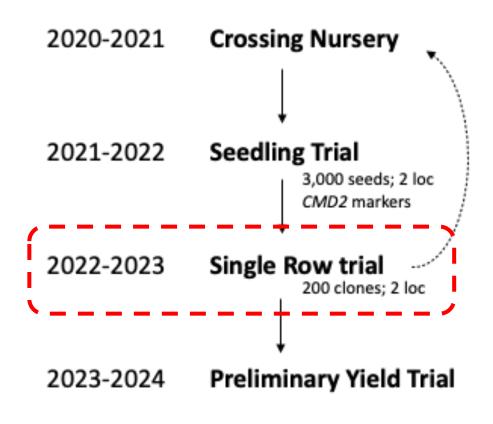

Generation 4


Generation 3

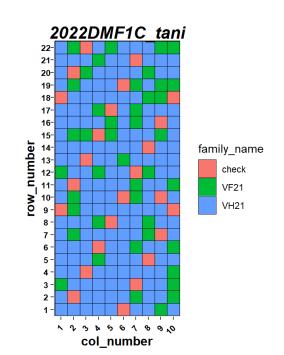
Generation 2

Generation 1


Generation 0

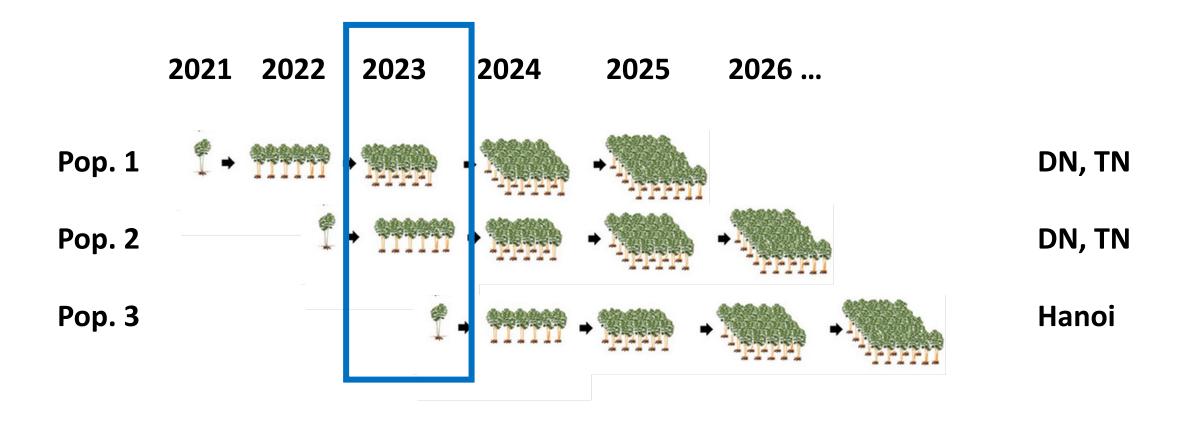


Develop CMD-resistant Varieties in Vietnam


Single-Row Trial Evaluation of the Breeding Population

Broad-sense Heritability at Two Locations

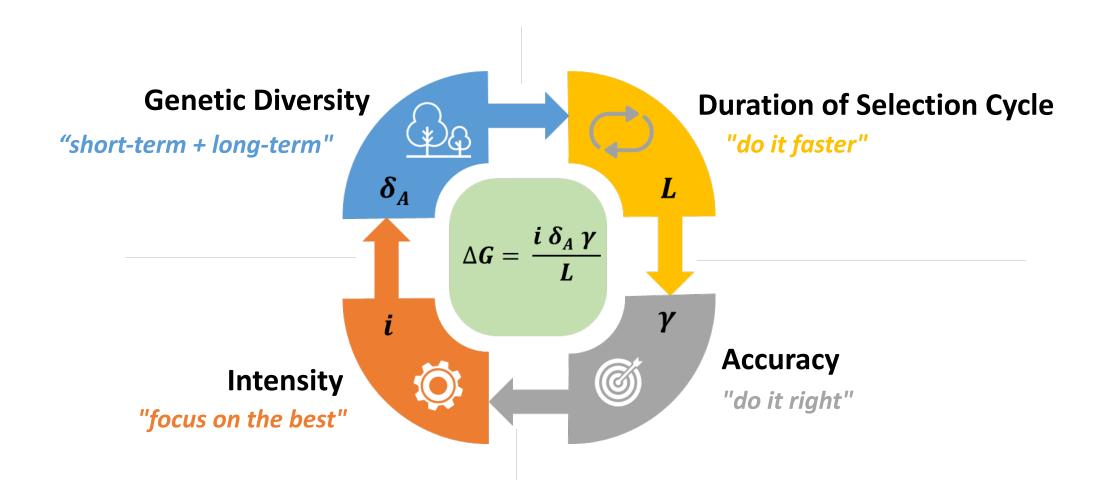
	CMD	Branch	Starch	Yield per
	(6 mon)	number	content	ha
Two loc.	0.87	0.66	0.7	0.38


2022-2023 growth season

Selected Progenitors for the Next Cycle

accession_name	pedigree	height_1st_branch (cm) yield (ton/ha)	starch_content (%)	starch yield (ton/ha)
VH21-0127	IBA980505	200.4	34.6	22.0	7.63
VH21-0779	KU50	160.4	30.4	24.2	7.37
VH21-0097	IBA972205	150.1	28.9	23.9	6.91
VF21-0055	HLS14_AR9-18	184.0	28.9	22.9	6.60
VF21-0005	HLS13_CR24-3	214.3	26.5	24.7	6.54
VH21-0061	IBA972205	260.0	29.1	22.2	6.46
VH21-0447	AR9-18	235.2	27.0	23.9	6.46
VH21-0402	KM140	177.8	28.3	22.7	6.43
VF21-0197	KM419_AR9-18	167.5	29.7	21.7	6.43
VF21-0146	KM140_AR9-18	262.7	27.7	23.1	6.40
VH21-0016	IBA920057	229.9	27.6	22.4	6.18
VH21-0729	KU50	303.3	25.5	23.6	6.01
TMEB419		285.9	25.9	24.9	6.45
KU50		253.6	26.3	23.4	6.14

Three Populations of Cycle 1 in the Field



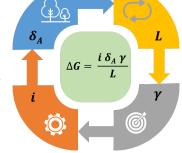
The crossing nursery for cycle 2 is in Lam Dong.

Breeding Populations of Three Cohort of Cycle 1 (2021-20223)

Item	2021	2022	2023
Number seed sowing			
Full-sibs (seed)	1.874	1.556	1.844
Half-sibs (seed)	5.290	3.712	4.040
Germination (%)			
Full-sibs	38.40	55.40	60.85
Half-sibs	26.74	44.80	45.50
Clones to testing CMD marker			
Full-sibs (clone)	137	303	
Half-sibs (clone)	93	499	
Showing have CMD2			
Full-sibs (clone)	61	158	
Half-sibs (clone)	48	160	
Single row evaluation clones	336	319	

Increase Genetic Gains through Continuous Improvement

Continuous Improvement


Genetic Diversity

- Variation profiling (2022-)
 - Hybrid Breeding (2019-)

-- Selfing

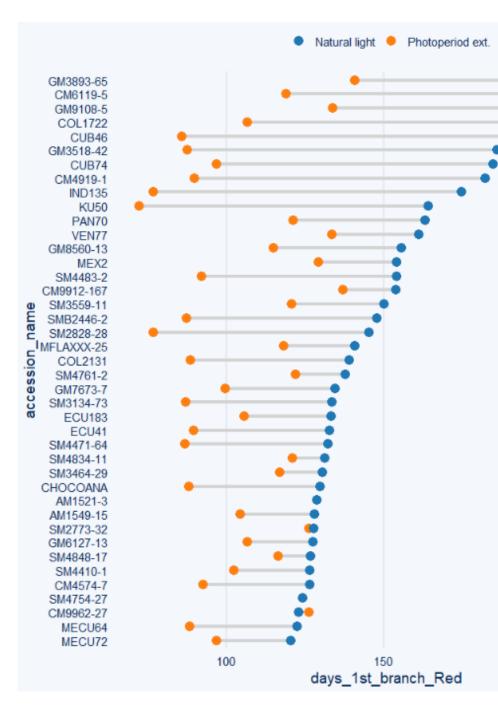
Duration of Selection Cycle

- Early flowering (2016-)
- Genomic Selection (2019-)
 - -- Mate and parent selection

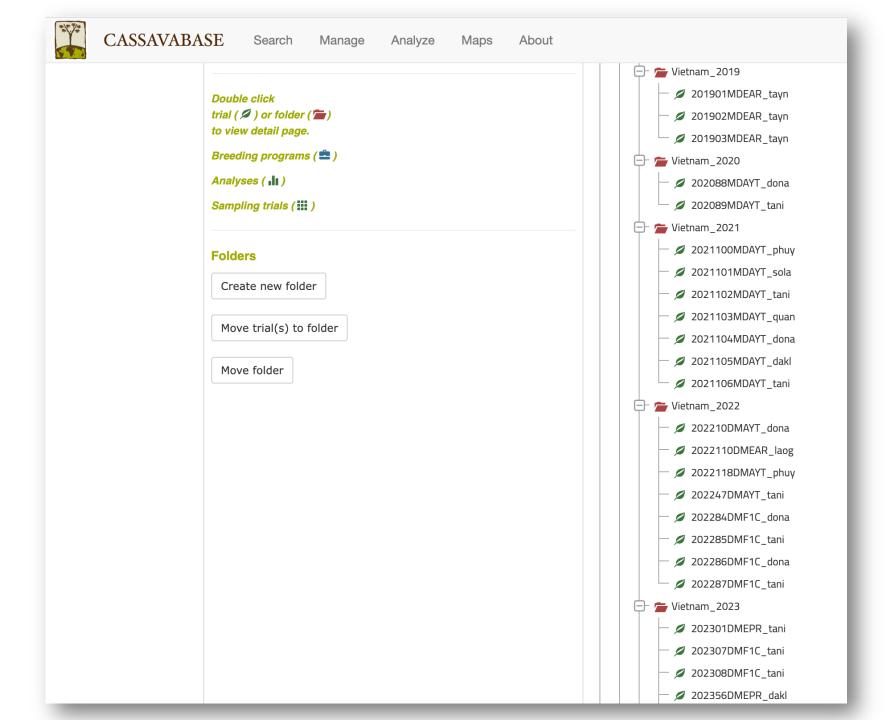
Intensity

- GeoRadar for yield (2022-)
- QualitySpec for WAB (2022-)
- Hyperspectral imaging (2022-)
- Drone imaging for early vigor (2022-)
 - Imaging for whitefly (2018-)
 - Imaging for PPD (2019-)

Accuracy


 Digitalization 	(2019-)
• ≥ 5 Checks, BLUP and GBLUP	(2020-)

- Selection Index (2012-)
- NIRS & Image Analysis (2012-)
- Operational Excellence (SOP) (2019-)
- QC/QA (2020-)
- MAS (2020-)
 - --- **CMD**, CBSD, DM, **carotenoid**, HCN, WAB, sprouting, ID, flowering, mites, thrips, small granule, plant type



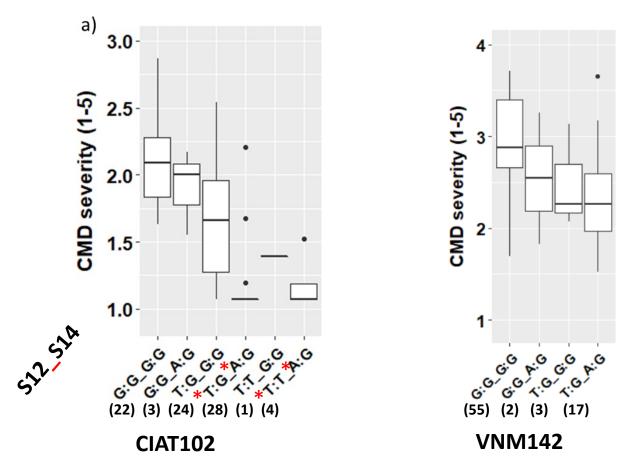
Photoperiod Extension

induced early flowering by **2- 3 months** for progenitors with erect plant architecture.

Data Management

Fieldbook

Variation of CMD severity in VNM142 and CIAT102 populations


Population	Trial	Trait	Mean	Median	Rang	V _g	V _e	H ²
VNM142	201801MDEAR	CMD_1.5MAP	1.56	1.43	1.00-4.00	0.10	0.21	0.50
		CMD_3MAP	1.87	1.75	1.00-4.00	0.18	0.22	0.63
		CMD_6MAP	2.23	2.20	1.00-4.00	0.27	0.19	0.75
		CMD_10MAP	2.82	2.86	1.19-4.00	0.40	0.19	0.82
	201901MDEAR*	CMD_10MAP	2.65	2.33	1.00-4.12	1.30	0.04	0.99
	201902MDEAR [#]	CMD_10MAP	2.83	2.63	1.70-4.10	0.62	0.11	0.94
CIAT102	201903MDEAR	CMD_3MAP	1.73	1.64	1.00-3.77	0.42	0.12	0.91

 V_g , total genetic variance among unique clones; V_e , the variance of residue. The calculation of genetic variance was performed by using the mixed models by fitting replications and clones as random effects.

^{*}the trials with 3 clones from VNM142 and four checks, HLS11, KM419, KU50 and C33. MDEAR, cassava mosaic disease advanced yield trial.

^{*}the trials with 9 clones from VNM142 and three checks, HLS11, KM419 and KU50.

CMD2 Markers Works in Segregation Populations

S12_7926132 and S14_4626854
For marker S12, ***T** is the resistant allele; For marker S14, ***A** is the resistant allele

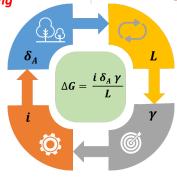
S12_7926132 and S14_4626854 worked well for **segregation populations** (e.g., CIAT102), but not for **diversity populations** (e.g., VNM142)

New CMD Resistance to SLCMV Identified from VNM142

Genotype/group	Clone	2018-2019	2019-2020	S12_7926132	S14_4626854
UNK-CI-2	VN19-442	1.5	2.3	T:G	A:G
CR63_PER262_TAI9	VN19-1432, VN19-1556	1.6	1.9	T:G	A:G
KM57_VNM8_Xanh Vinh Phu	VN19-1039, VN19-1050	1.6	1.9	T:G	A:G
UNQ-115	VN19-773	1.7	2.1	T:G	A:G
UNK-F	VN19-1184, VN19-1194	2.0	2.6	T:G	A:G
UNQ-44	VN19-320	1.7	1.8	G:G	G:G
UNK-AF-2	VN19-1805	1.8	NA	G:G	A:G
UNK-CH	VN19-390	1.9	2.2	G:G	G:G
KU50_KM94_TAI16	11 clone samples (e.g., VN19-1739	2.6	3.5	G:G	G:G
KM140	4 clone samples (e.g., VN19-2659)	3.6	NA	G:G	G:G
KM419	2 clone samples (e.g., VN19-2202)	3.0	4.0	G:G	G:G
C33	C33	NA	1.1	T:G	A:G

BLUP of the CMD score at 10 month after planting was provided here for each unique clone (or group)

Continuous Improvement – Future Direction


Genetic Diversity

- Variation profiling (2022-)
- Hybrid Breeding (2019-)

-- Selfing

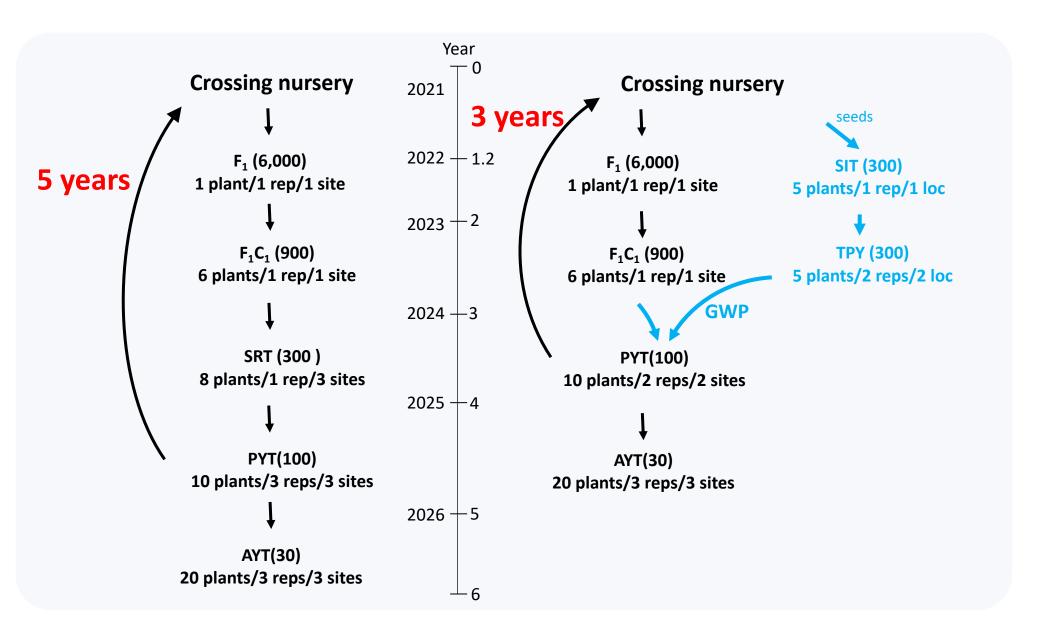
Duration of Selection Cycle

- Early flowering (2016-)
- Genomic Selection (2019-)
 - -- Mate and parent selection

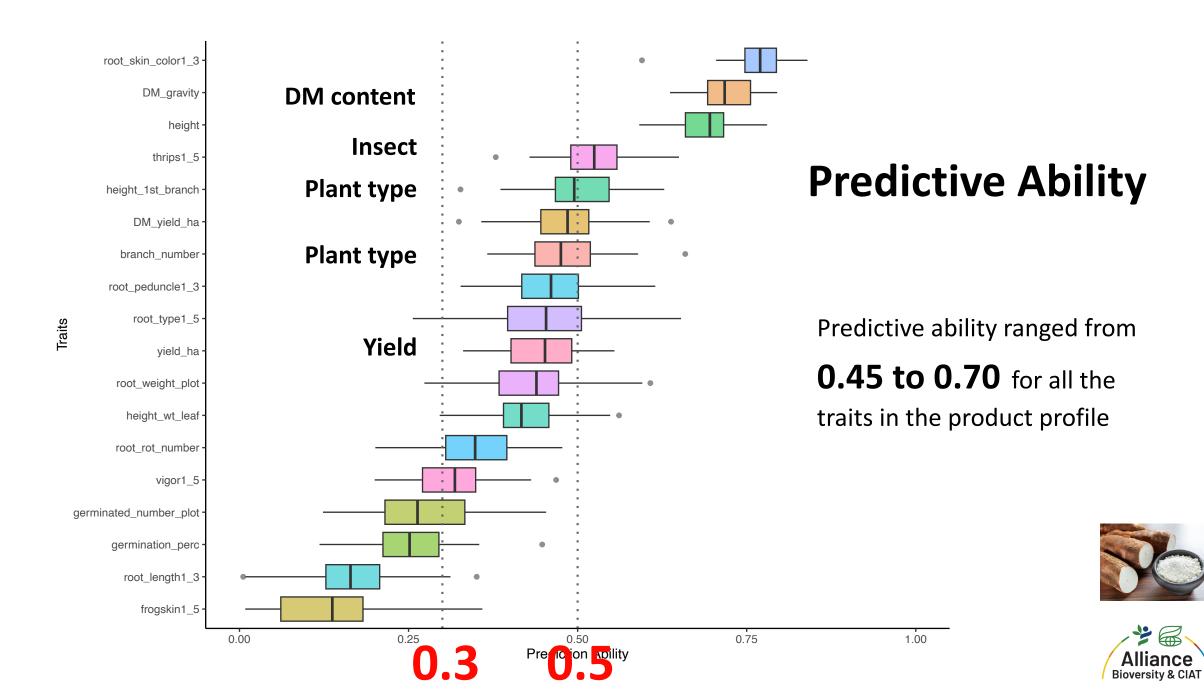
Intensity

- GeoRadar for yield (2022-)
- QualitySpec for WAB (2022-)
- Hyperspectral imaging (2022-)
- Drone imaging for early vigor (2022-)
 - Imaging for whitefly (2018-)
 - Imaging for PPD (2019-)

Accuracy


 Digitalization 	(2019-)
 ≥ 5 Checks, BLUP and GBLUP 	(2020-)
 Selection Index 	(2012-)
 NIRS & Image Analysis 	(2012-)
 Operational Excellence (SOP) 	(2019-)
• QC/QA	(2020-)
• MAS	(2020-)

-- **CMD**, CBSD, DM, **carotenoid**, HCN, WAB, sprouting, ID, flowering, mites, thrips, small granule, plant type



Cassava Breeding Scheme

Cassava Hybrid Breeding

Cassava vs. Maize

Starch
Diploid
Cross-pollinated
Self-compatible
Inbreeding depression

Clonal propagation

– no seed production system

Transform Cassava Breeding using Inbred Progenitors

Selective breeding

towards

Breeding by design

Cassava Hybrid Breeding

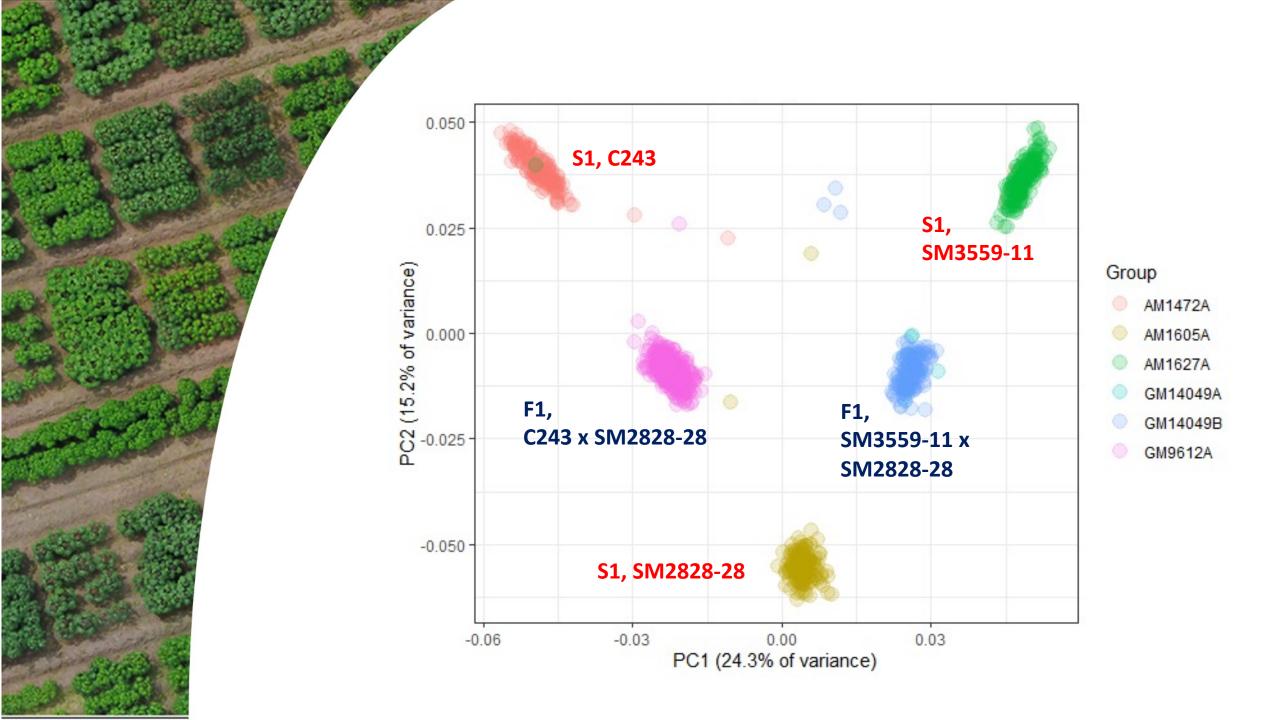
Understand inbreeding depression

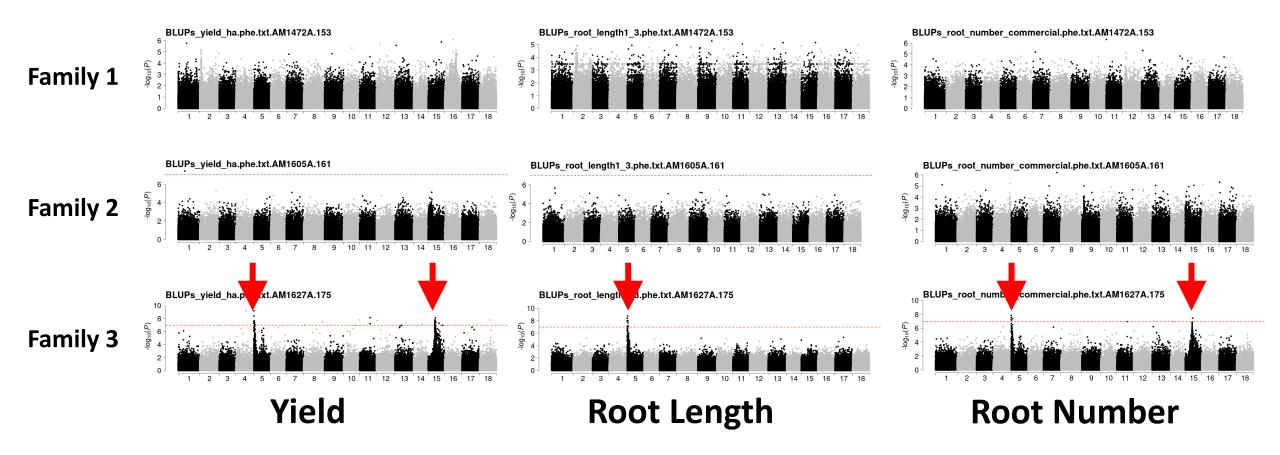
Develop semi-inbred progenitors

Improve **population** using rapid cycling

Create heterotic groups

Short-read **sequencing** & Bioinformatics


Consulting + QG simulation


Doubled Haploid technology

Deleterious Mutations & Database for variation profiling

Family-specific Loci on Chr 5 and 15

BC, Beta-carotene; CQ, cooking quality; WX, waxy starch; SG, small granule starch; PQ, processing quality

Breeding by design

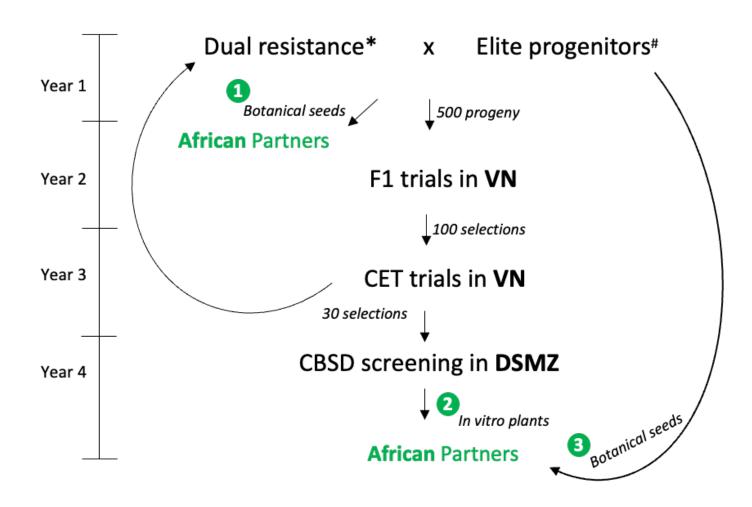
Future Development in South East Asia

Capacity Building Flower inducing technology SOP in evaluation Data management and analysis Genomics-assisted breeding Advancement decision making **Team Product** Germ-Tool plasm MAS

Disease Resistance

- Resistance to cassava witches' broom
- **CBSD** resistance
- Root rot tolerance

*core collections and local varieties


Continuous Improvement

- Genomic selection
- Hybrid breeding

Dual Resistant clones to CMD and CBSD from Dr. Winter

standard name	female parent	male parent	
POP112-1	COL40	C33	CBSD & CMD resistance; seeds from CIAT
POP101-1	PER353	GM7673-3	CBSD & CMD resistance; seeds from CIAT
POP108-1	C33	PER353	CBSD & CMD resistance; seeds from CIAT
POP108-10	C33	PER353	CBSD & CMD resistance; seeds from CIAT
POP118-8	COL144	C39	CBSD & CMD resistance; seeds from CIAT

CBSD Breeding in Asia to Serve Africa

^{*} Dual resistance: resistant to both CBSD and CMD; VN, Vietnam; DSMZ, Leibniz Institute DSMZ-German

[#] progenitors with erect plant type, high and stable dry matter and high yield

