

Experimental field-level impacts of CMD and CWBD: Developing short-term recommendations for farmers based on best-bet information

Sophearith Sok, Laothao Youbee, Saythong Oudthachit, Jonathan Newby, Wilmer Cuellar, Erik Delaquis, Warren Arinaitwe, Troung Minh Hoa, Pham Thi Nhan, Imran Malik

e-mail- a.malik@cgiar.org

Alliance

Final Review AGB-2018-172 4th October 2023

Bioversity International and the International Center for Tropical Agriculture (CIAT) are CGIAR Research Centers. CGIAR is a global research partnership for a food-secure future.

Pest and disease in the region- a new challenge

Cassava Mosaic Disease Geminiviruses

Cassava witches broom

Screening for disease resistance and seed degeneration

CMD Cambodia

CWBD Laos

CAVAC funded screening for CMD resistance (2018-19 and 2020)

- Systematic evaluation of resistance to CMD in current varieties
- Effect of fertilizer application (building on results with CWBD in Laos)
- Evaluate yield impacts on different varieties

Variety	Origin	Genetic background	
KU50	Thailand	R 1 x R 90	
Rayong 11	Thailand	R 5 x OMR 29-20-118	
SC8	China	CMR38-120-10	
HuayBong60	Thailand	R 5 x KU 50	
KM98-1	Vietnam	R 1 x R 5	
Rayong 5	Thailand	27-77-10x R3	

Mr. Sophearith Sok diligently collected leaf samples and send for PCR analysis

Asymptomatic plants tested positive in PCR analysis

Percentage of asymptomatic plants testing positive for Sri Lanka cassava mosaic virus (SLCMV) over 2 years. Young leaves from 33.3 % of plants without any symptoms from each plot were collected for diagnosis of SLCMV by PCR of 9 varieties of cassava listed. Samples were collected after 63 and 270 days after planting (DAP) during 2019-20 season (year 2) and after 21 (DAP) during 2020-21 season (year 3).

Varieties	Clean	Positive selection	Clean	Positive selection
	2019-20		2020-21	
KU50	6.7 ±0.07	0	6.7 ± 0.07	0
R11	12.5 ±0.09	66.7 ±0.13	20 ± 0.20	26.7±0.12
HB60	26.7 ±0.12	23.5 ±0.11	0	18.8±0.10
R5	46.7 ± 0.13	35.3 ±0.12	6.7 ± 0.07	0
SC8	NA	42.9 ±0.14	NA	NA
TME3*	30.8 ± 0.13	NA	15.4 ± 0.10	NA
KM98-1	NA	31.3 ±0.12	NA	18.8 ± 0.10
HB80**	31.3 ±0.12	NA	26.7 ±0.12	NA
R72	-	-	NA	0

Alliance

How much yield is lost from planting diseased stakes?

(1) + selected (i.e. visually healthy looking)planting material from 2018–19multiplication block

(2) symptomatic planting material from 2018–19

(3) CMD-free planting material from TTDI

Fresh root yield was significantly higher for clean planting material over symptomatic planting material (in Vietnam)

Treatment 🗮 Clean 🚍 Positive 🚍 Symptomatic 2020-21 2020-22 2020-23 2020-21 2020-22 2020-23 30 40 20 Starch Content (%) Yield (t/ha) 10 0 10 KM419 -012 HL-S14 KM140 KM419 KM94 -S14 KM140 KM419 KM94 -812 HL-S14 KM140 KM94 HL-S11 HL-S11 312 <u>5</u> -L-S12 HL-S14 4M140 KM419 KM94 -012 -014 -S12 -1-S14 -L-S11 HL-S11 KM140 KM419 KM94 HL-S11 Genotype

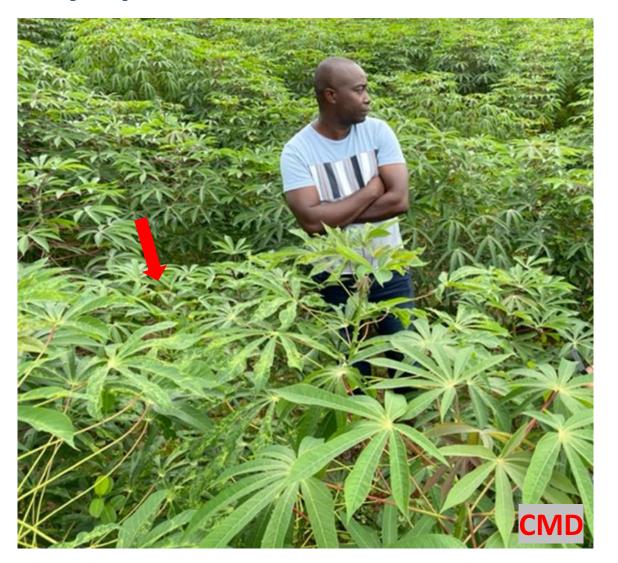
Treatment 🗮 Clean 🚍 Positive 🚍 Symptomatic

In Vietnam, where above 90% of plants developed symptoms within 30 days after planting yielded very low even when clean planting material were used

KM140

KM419

KM94

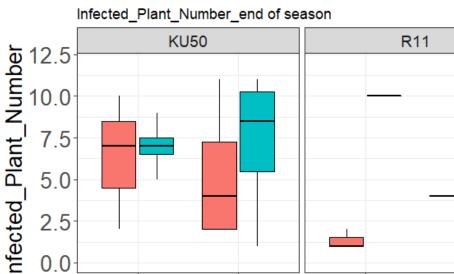

Lessons

- Number of infected plants \uparrow with time
- Some plants from symptomatic planting material not developing symptoms
- Plants from clean and positive selection planting material produced 2- to 3-times higher yields than diseased planting material

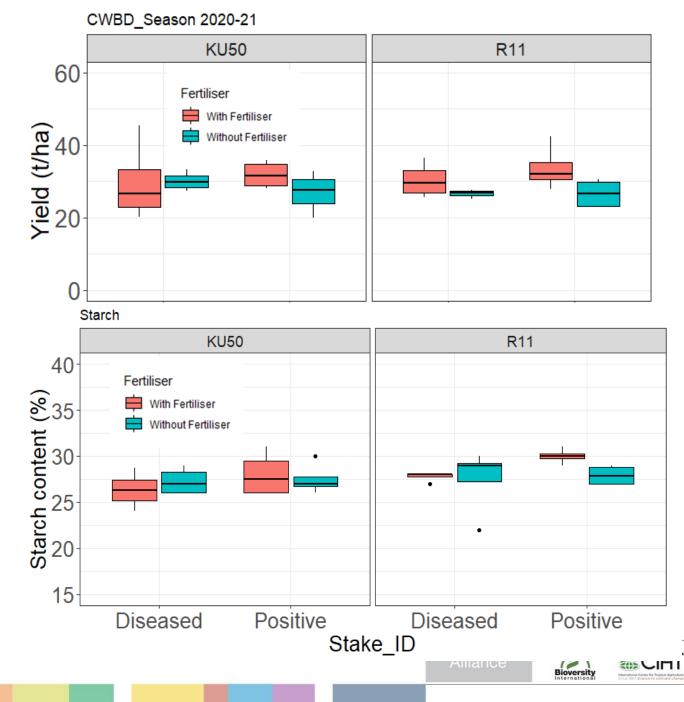
Single plant with symptomatic and asymptomatic branches

Effect of CWBD on cassava root yield and starch content with different fertilizer treatment

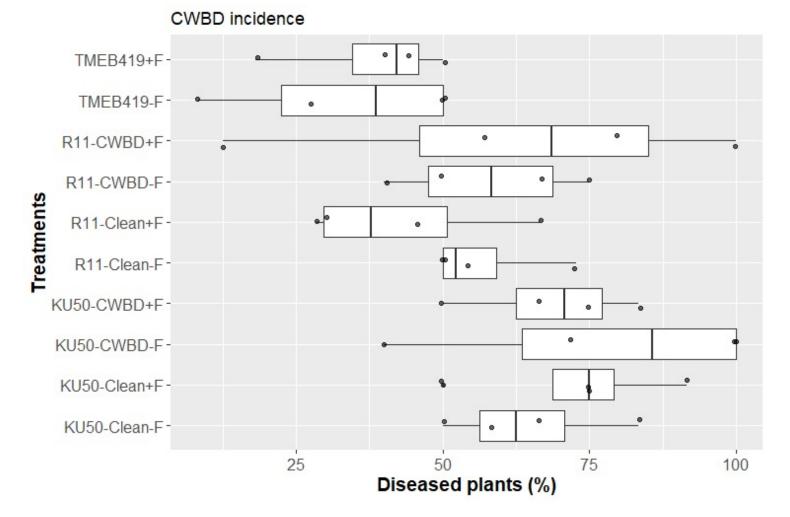
Treatment


- T1 = KU50 Clean + F
- T2 = KU50 Clean F
- T3 = Rayong 11 Clean + F
- T4 = Rayong 11 Clean F
- T5 = KU50 CWBD + F
- T6 = KU50 CWBD F
- T7 = Rayong 11 CWBD + F
- T8 = Rayong 11 CWBD F

F= Fertiliser (300 Kg/ha)


Diseased planting material and positive selection yielded similarly (season 2020-21)

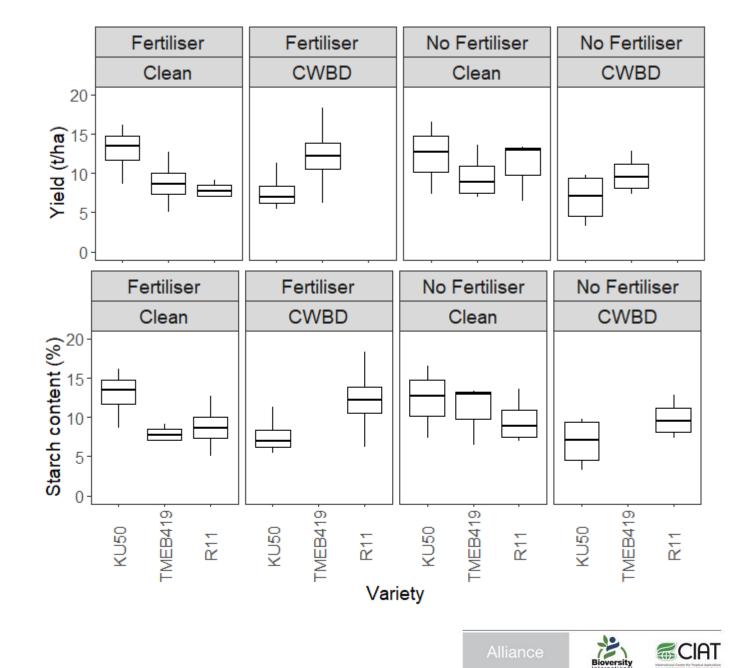
2.5


0.0 **Diseased** Positive **Diseased** Positive Stake ID

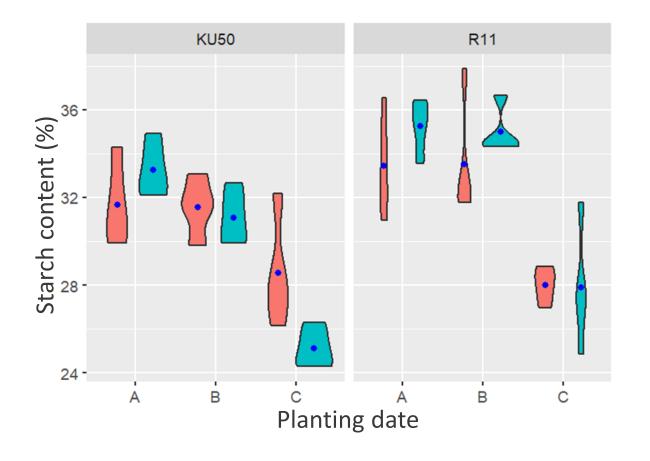
- **KU50 showed more infection** compared to Rayong11
- Fertiliser may have positive effect on infection (less infection in fertilised plots)

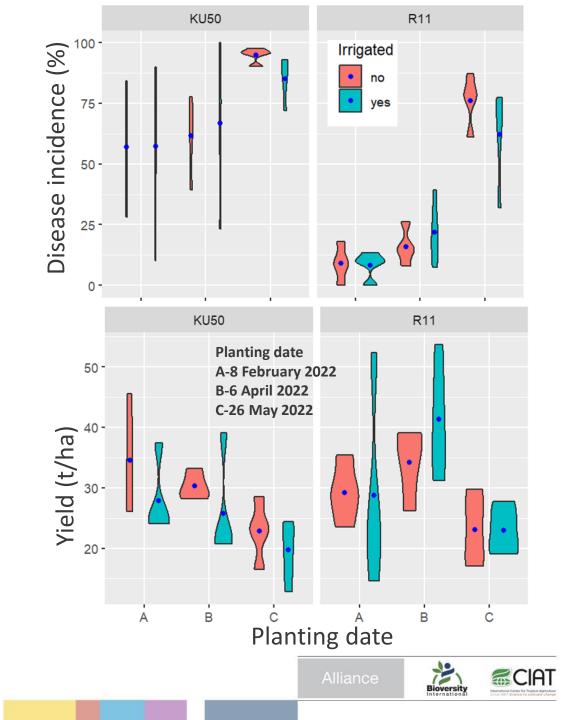
Season 2022-23

- TMEB419 no CWBD infected plants
- CWBD infected planting material low germination 50%

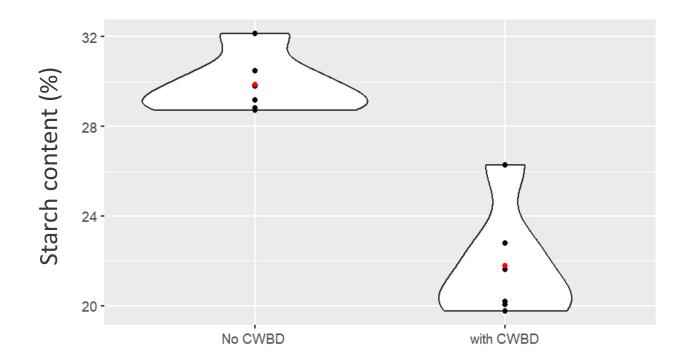


Season 2022-23


Low yield and starch content



Time of planting matters


CWBD incidences greater in late-planting and that impacted on plot yield and starch content

CWBD infection significantly diminishes KU50 starch content

Starch content was 27% lower in CWBD infected plants compared to healthy plant (visually without symptoms) for KU50. There were not enough roots of R11 to compare between healthy and infected plants' starch content.

Lesson learned

- Asymptomatic plants tested PCR positive for CMD virus at the end of the season
- CMD infection early in the season cause significant yield loss- suggest clean seed may be the solution to maintain yield.
- CMD resistant varieties are essential for maintaining productivity
- Until disease resistance varieties are available clean seed sources are essential to keep cassava production sustainable and profitable- for CWBD

Australian Government

Australian Centre for International Agricultural Research

Thank you!

Bioversity international and the International Center for Tropical Agriculture (CIAT) are CGIAR Research Centers. CGIAR is a global research partnership for a food-secure future.