

Cambodian Upland Soils Projects

Strengthening soil knowledge and capability in Cambodia to support upland agricultural development

Ngala kwop biddi. Building a brighter future, together.

Australian Centre for International Agricultural Research

Land Management Group Professor Richard Bell

 Crop and plant nutrition 			Res Fellows		PhD/ MRT students	
 Soil fertility and management 			Ed Barrett-Lennard		Fariya Abubakari	
Menorement of condo			Wendy Vance		Hassan Sarder	
 Management of sands 			Tona Sanchez Palacios		Marcia de Lima	
Conservation Agriculture						
			Karthika Pradeep		Lucas da Silva	
Saline soils			Luca De Prato		winwin Pyone	
			Miaomiao Cheng		Jo Fulwood	
Cropping systems			Davina Boyd		Christopher Reed	
Revegetation of mine sites and minerals processing			Mike Wong		Md Nazrul Islam	
			Noel Schoknecht		Afrin Mila Jahan	
residues		Gavan McGrath		Roongnapa Bowichean		
	Partner agencies					
	ACIAR	CSIRO/ U Adelaide/ U	JQ/ USA Braz		azil, UFV	
	GRDC	DPIRD/ UWA/ UTas/ANSTO		Bangladesh, BARI/ BRRI/ BAU		
	Soil CRC	NSWDPI/SCU/ CSU/	PIRSA BARC/KU/ P		STU/ CASPA/ SRDI	
	WANTFA/ WMG/ Leibe	Laos, NAFRI		India,	dia, CSSRI/ BCKV	
	Facey Group/ CFIG/ BFS	Cambodia, GDA- DALRM/CARDI/RUA		Vietnam, ASISOV/IAS/ HUAF		

Next 5 years- plans, opportunities, collaborations

- Soil CRC
 - sandy soils, multiple constraints, novel fertilisers, soil
 C
- GRDC
 - K nutrition, biofortification of grain, emerging deficiencies (Mg, B, Si, Ni)
- ACIAR
 - Bangladesh; Conservation Agriculture, nutrient management
 - Cambodia, Laos; Crop-Livestock, Soils in the Uplands
 - Ganges coastal zone; cropping intensification
- Alleviating subsoil constraints- chemical, physical, biological strategies

Outline

- Project highlights
- Objectives of the new project
- Highlight potential collaboration between SLAM/2022/103 and CROP/2022/110

Soil degradation occurs at a rapid rate in upland areas of due to agricultural practices

Farmers do not recognize the value of investing in soil health

There is limited uptake of sustainable agricultural practices in upland farming systems

There is very limited soil information in easily accessible forms in Cambodia

Soil degradation is a recognized risk to food security and economic stability

Soil degradation is exacerbating the impacts of climate change and vis versa

Practice change in upland farming systems is constrained by access to knowledge and services

Soil research and extension capacity in Cambodia limited

There are multiple international development partners working in Cambodia uplands

Introduce new methodologies for soil and land suitability assessment and identify main soil types and landscape patterns in representative upland regions.

- Geographic framework of Cambodia Framework for interpreting soil distribution in a landscape context. Spatial framework which separated Cambodia into zones for soil landscape interpretation.
- Soil surveys of two districts completed which identified 5 new upland soils not described previously.
- Cambodian Soils Practitioners Stakeholder group implemented Workshop on soil survey, soil database and method harmonisation.
- Rapid Soil Analysis (MIR and ISE) techniques developed and calibrated for CARDI laboratory enhancing capacity for soil chemical and physical analysis.

Phnom Penh, 05 December 2022

Identifying, characterising and mapping key agricultural upland soils

Establishing infrastructure and expertise in-country for Rapid Soil Analysis

Mid-Infrared spectroscopy

- Bruker MIR commissioned
- The MIR calibration was completed for soil parameters.
 - % clay, % sand, CEC, TOC analytical quality
 - pH(H₂O), DPTA Mn and Cu good quality estimates
- Calibration
 - Samples from the new collection sites from North and North East Cambodia were in set of samples considered to be outside the current calibration range.
 - Currently protocol under development on how to improve the current calibrations to include these new locations

Near-Infrared spectroscopy

• Small activity started to complete Near-Infrared Spectroscopy on Cambodian samples in Australia.

Ion selective electrode

• Ion selective electrode method for measurement of K implemented.

MIR Calibrations – Analytical quality estimates

TOTAL ORGANIC CARBON (%)

CLAY %

Case for development for rapid soil analytical techniques

- **1.** Requirement for soil information and inventory of natural resources
- 2. Assessment of soil properties for land suitability and management
- 3. Number of samples required for modern soil attribute mapping
- 4. Logistics of providing timely soil information at the local level

Rapid soil analysis – MIR Spectroscopy

- Allows estimation of soil properties at ALL sample sites
 - Not possible with conventional laboratory analysis because it is too expensive and timeconsuming
- Each sample takes about 5 minutes to acquire MIR spectra
- MIR spectra can be used to estimate several soil properties
 - This requires a calibration for each soil property using laboratory analysis of a small subset of samples
- Cost ~AUD \$ 40K
- Wet chemistry AUD\$ 150 per sample
- Calibrate using ~100 samples = AUD \$ 15000

Characterise the soil and land constraints to crop production and identify soil management technologies for these regions.

- On-farm satellite trials demonstrated crop response to P and K fertiliser additions compared to nil-fertiliser by farmer practice.
- Land suitability analysis of soil types within the study districts with a diagnostic tool developed.
- Field trials and pot trials identified the variability of response of crops and soils in the study region to amendments of fertiliser for nutrient improvement, or lime for managing low pH conditions.

Smallholder farmers in extensive areas of the Cambodian uplands are hampered by unreliable yields

The frequency of fertiliser use in upland regions can vary among famers and is low.

There are significant yield gaps between farmers' practice and improved agronomic practices.

Conducting pot and field trials to improve productivity of key soils

Crop selection and nutrient studies (K and P) on degraded

Lime amendment for soil acidity

Conducting Satellite trials for demonstrations

• Satellite trials : Assessment of Fertilizer Use Efficiency and Suitable Growing Seasons for Peanut in Cambodian Uplands (2019, 2020, 2021, 2022)

Assess Rate of land degradation in the Aoral District of Cambodia (2020 - 2022) Occurrences of soil and land degradation in the Aoral district reported after land clearing.

Soil loss by erosion

Fertility decline by loss of soil organic matter and plant nutrients, and soil acidification.

Aim

Determine the rate of soil and land degradation since clearing and to predict future land and soil conditions if current rates are not altered by better practices.

This complements work on soil surveys where samples were characterised by rapid soil analysis techniques, farmers' interviews and field experiments to manage soil pH and nutrient deficiencies.

Conducting innovative extension exercises to maximise uptake of research findings in rural, subsistence communities

Community soils activities and on farm field activities

Farmers knowledge and perceptions – soil properties and soil fertility

Year	Торіс	Aims
2019	Community soil baseline activity: Aoral & Dambae Districts	Determined farmers' perspective/understandin g of: soil type, soil related constraints, suitable crops for particular soils and soil management practices.
2020	Gender awareness & analysis activities	Understand the demand of women and men farmers for adoption of soil management information, tools and technologies
2021/22	Soil fertility and fertiliser use study	Explore smallholder understanding of soil fertility; document the extent of fertiliser use; and investigate the constraints to fertiliser use.

New Project - CUSP 2.0

The project aims to identify and develop sustainable soil management solutions to priority soil constraints and soil degradation risks in upland agro-ecological systems in Cambodia.

- Improved soil management practices in upland agriculture to limit soil degradation.
- Improved understanding of soil information needs and knowledge sharing pathways across diverse stakeholder groups to enable sustainable and profitable management of upland crops.
- Improved knowledge and capability for managing soil resources in Cambodian uplands among researchers, extension practitioners and farmers.

Collaborations

- Capacity building for characterisation of soil properties.
 - Purpose
 - Sampling strategy
 - Analysis (MIR, ISE, wet chemistry)
 - Reporting
- Soil constraints and management practices for cassava identified.
 - Nutrient budgets
 - Soil structure stability
 - Erosion, waterlogging
- Quantify soil degradation under cassava farming systems.

- Site characteristics added to soil database of Cambodia.
- Increased range of samples analysed by MIR → Improve calibration.
- Land suitability assessment criteria developed for Cassava.

Thank you

Wendy Vance w.vance@murdoch.edu.au

Ngala kwop biddi. Building a brighter future, together.

Calibrated 28 Soil Attributes

Particle size distributions:

Coarse sand (200-2000 uM), Fine sand (20-200 uM), All sands Silt (2-20 uM) Clay (<2 uM)

Chemical attributes

Organic C (Walkley and Black) pH in CaCl₂, pH in water Exchangeable acidity Exchangeable AI, CaCl₂-AI Base saturation, aluminium saturation CEC, ECEC PBI

Exchangeable base cations Ca, Mg, K, Na

Nutrients

Olsen P, KCI-S, CaCl₂-B, DTPA Cu, Fe, Mn, Zn

Electrical conductivity

Attribute	r2	RMSECV	Goodness of Calibration
CEC	97.6	1.26	Very good
Exch Ca	96.4	0.94	Very good
Clay	95.9	5.19	Very good
Organic C	94.9	0.121	Very Good
Exch Mg	94	0.74	Very Good
Sand	93.2	6.58	Very good
ECEC	87.9	2.55	Good
DTPA Cu	83.8	0.2	Good
DTPA Mn	82.1	20.5	Good
Sulphur	77.9	2.71	Good
DTPA Zn	77.2	0.26	
Boron	76	0.06	
pHCaCl2	75.8	0.4	Indicator
Exch Al	72	0.51	Indicator
PBI	67.6	353	Indicator
Conductivity	61	0.0125	Indicator
Base Sat	59.4	22.1	Indicator
DTPA Fe	54.9	10	Poor
Olsen P	43.7	3.9	Poor
Exch Na	18.9	0.46	Poor
Exch K			